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W10. (Solution by the pfoposer.) Without loss of generality we can
assume that a > b > ¢ from which immediately follows that
a+b>a+c>b+cand

1 1 1
> > .
b+c = c+a T a+b

Since the first and the last Sequences are sorted in the same way, by applying
rearrangement inequality, we get

v

3 a+b+c 5 a+b+c
" b+c c+a a-+b n at+b b4+c c4aq

5 a n b n c > 3 b . c n a
n n
b+c cH+a a+0b - a+b b+c c4q

a+b+c a+b+c
b+c c+a a+b T a+b b+e c+a

Adding up the preceding inequalities, yields

a b c a b c
6n + 1 —+——1]>9
(6n + )(b+c+c+a+a+b)_ n+a—{—b+b+c+c+a

from which we obtain

L/6n+1)a~b (6n+ Db—c (6n+1)c—a
— >
3( b+c " c+a N a+b = dn

Taking into account AM-QM inequality, we have

() (B, (o

>1<(6n+1)a—b+ (()’n—f—l)b—c+ (6n—|—1)c—a) > 3n

-3 b+ c c+a a-+b

Squaring and arranging terms, yields

(6n+1a —b\* 7/ (6n+1)b—c\2 (6n + 1)c —a\? )
- " -~ /7 _* >
( b+c " c+a * a+b = 2tn

from which the statement follows. Equality holds when ¢ = b — ¢ and we are
done.
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Second solution. Let m := 3n.Then

(6n+1)a—b)\? (bn+1)a—1> 9
> 27 <— >2 —
Z( n(b+c) 7 Z b+ c mn

cyc cyc

2m+1)a—b 2 9
>3
= g ( b+c ) > 3m (

cyc

[a—
~—

and we will prove that inequality (1) holds for any m € N. Since

(2m+1)a - b)*
b+c

>2m(2m+1)a—b) —m?(b+c¢)

= ((Qm—f—l)a——b—m(b—l—c))2
then

5 ((sz—j)ca—b)Q = (Qm((zrn;ii)aw) —m2).

cyc cyc

Thus, suffices to prove inequality

2m ((2m+1)a —b) 9 2m+1)a—-b _ .
> >
E = > 6m* <— E T >3m  (2)

cyce cye

Inequality (2) holds because by Cauchy Inequality

Z(Qm—}—la—b Z ((2m +1)a — b)?
b+ c b+c J(2m+1)a—0b) —

cye

2
m a—b
(;((2 ) )) B 4m? (a + b+ ¢)®
2+ (@m+1)a—b)  (4m+1)(ab+ ac+be) — (a2 + b2 + 2)
cye

and

dm? (a + b+ ¢)? > 9m
(4m + 1) (ab+ ac+ bc) — (a? + b2 + ¢2) ~

& dm(a+b+c)>
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>3 (4m + 1) (ab+ ac+ bc) — 3 (a* + 0% + %) =
dm(a+b+c)* >

> 3(4dm+ 1) (ab+ac+bc) —3(a+ b+ ¢)> + 6 (ab+ ac+ be) <~

(4m+3)(a+b+c)° >3@m+3)(ab+ac+be) = (a+b+c)?>

> 3(ab+ ac+ be).

Arkady Alt

Third solution. Using the inequality, we have

(x+y+2)°

() ()« ()
1((6n+1)a—b (6n+1)b—c (6n+1)c-a>2

=3\ nb+o n(c+ a) n(a +b)

Using Cauchy-Buniakowski-Schwarz inequality, we get

| =

2yt 2>

(bn+1)a—b (bn+1)b—c (bn+1)c—a
n(b+c) n(c+a) n(a+b)

B 36n2 (3" a)?
Cn((12n+1)3ab— Y a?)

- (bn+1)a— Eja)2

= CB) \S~(6nt Da ) (n 0+ 0)

We show that

36n2 (3 a)?
n(2n s DS ab—Sa2) ="
36n% (3 a)’ PN

n((12n+1)> ab—> a?) ~
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& 4dn (Za)2 > (120 +1)Y ab— 3 a? = (4n + 1) (Zaz_zab) >0

that is true.

Nicusor Zlota

W11. (Solution by the proposer.) First, we observe that there are
numbers satisfying the equality stated, for instance, 1,2,4, and 5. To prove
the statement we argue by contradiction. Suppose that there exists four
positive integers x,y, z,¢t with x > y > 2z > ¢ such that
' p— =zt
Yy

?taz— 22 =42+ yt —t2 and p = zy + 2t is prime. Substituting z =

in the expression z? + rz — 22 = 32 + yt — 12, we get

p—=2t\* (p—=zt 2 _ 2 2
” + ” =z =y " +yt—t

and reordering terms, yields

p(p — 22t +yz) = (v + 2°)(y° + yt — 2)
Since p is prime, then p divides y? + 22 or divides y? + yt — ¢

o If p|y* + 2°, then 0 < y? + 22 < 22y < 2(xy + 2t) = 2p and this implies
y?2 + 22 = p = xy + 2t from which follows y|z(z —t). Since zy + 2t is
prime, then ged(y, 2) = 1, and therefore, p| (2 — t) which is impossible
because 0 < z —t < z < y.

o If p|y? +yt —t2, then 0 <yriyt-—t?< 2(xy + zt) = 2p and this
implies y? + yt — t? = p. That is, zy+ 2zt =y? +yt—t2 =22 — 22 — 22
from which follows | 2(z + t) and y | ¢(z + t). As ged(zy, 2t) = 1, then
z|(z+1t) and y| (2 +t). Since 0 < 2+ ¢ < 2z and 0 < z + ¢ < 2y, then
z+t=ux and 2+t =y which is impossible.

The preceding contradictions let us to conclude that zy + 2t is composite.
]

W12. (Solution by the proposer.) The limit equals 4¢” where v denotes
the Euler-Mascheroni constant. A calculation shows that

1
On = Yon — §7n+1n2+1n\/ﬁa



